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Abstract. We derive the action for nL ≥ 1 chiral spinor multiplets coupled to vector and scalar multiplets.
We give the component form of the action, which contains gauge invariant mass terms for the antisymmetric
tensors in the spinor superfield and additional Green–Schwarz couplings to vector fields. We observe that
supersymmetry provides mass terms for the scalars in the spinor multiplet that do not arise from eliminat-
ing an auxiliary field. We construct the dual action by explicitly performing the duality transformations in
superspace and give its component form.

1 Introduction

Antisymmetric tensor fields Bmn naturally appear in the
light sector of all string theories. In four space-time di-
mensions (D = 4) massless antisymmetric tensors are dual
to scalar fields, while massive tensors are dual to massive
vectors. Therefore, in the low energy effective action one
has the choice to represent these degrees of freedom in ei-
ther of two dual representations. Depending on the context
one formulation might be more convenient than the other,
and for this reason both formulations have generically been
developed.
Recently compactification with background fluxes

and/or compactifications on generalized geometries have
been studied in detail; for recent reviews, see, for ex-
ample, [1–3]. One novelty in these compactifications is
the appearance of massive antisymmetric tensors [4]. As
a consequence their description in terms of appropriate
supergravities has been worked out [5–15]. In particular
in N = 1 compactifications of type IIB on Calabi–Yau
orientifolds with O5- or O9-planes a massive antisym-
metric tensor appears when both electric and magnetic
three-form fluxes are turned on [16]. The corresponding
N = 1 superspace action was constructed in [10, 11]. Orien-
tifolds of generalized geometries, as discussed for example
in [17–20], can feature more than one antisymmetric ten-
sor. Therefore, it is of interest to generalize the analysis
of [10, 11] and discuss the couplings of a set of nL massive
antisymmetric tensors to vector and chiral multiplets. This
is the purpose of the present paper.
In N = 1 supersymmetry the three-form field strength

of the antisymmetric tensor is part of a linear multi-
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plet L [21–29]. The antisymmetric tensor itself resides
in the chiral spinor multiplet Φα. Whenever the anti-
symmetric tensor is massless the supersymmetric ac-
tion is described in terms of L only. Any mass term
for Bmn destroys the two-form gauge invariance. How-
ever, with the help of appropriate couplings to vec-
tor fields gauge invariance can be restored. The result-
ing Lagrangian is of the Stückelberg type [30, 31], in
which the vector fields provide the ‘longitudinal’ degrees
of freedom to render Bmn massive. Put differently, in
a unitary gauge the antisymmetric tensor ‘eats’ a vec-
tor field and becomes massive. A similar mechanism
can be employed for nL antisymmetric tensors as long
as enough (nV ≥ nL) vector fields are coupled. There-
fore, the first goal of this paper is the derivation of
a N = 1 superspace action for nL chiral spinor multi-
plets ΦIα, I = 1, . . . , nL, coupled to nV vector multiplets
V A, A = 1, . . . , nV . Furthermore, the gauge couplings of
the vector multiplets are allowed to depend on nC chiral
multiplets N i, i= 1, . . . , nC .
As we already stated, a massless antisymmetric tensor

is dual to a scalar, while a massive one is dual to a massive
vector. This duality is also manifest at the level of super-
fields, where a linear multiplet is dual to a chiral multiplet,
while a massive spinor multiplet is dual to a massive vec-
tor multiplet. Thus our second aim is to construct the dual
theory in superspace.
This paper is organized as follows. In Sect. 2 we intro-

duce the notions of the linear and the chiral spinor multi-
plet. By means of the Stückelberg mechanism we construct
the most general gauge invariant action for nL massive
spinor multiplets and give its corresponding component
form. We discuss the resulting scalar potential, which has
not the standardN = 1 form due to a contribution from the
chiral spinor multiplet. In Sect. 3 we perform the duality
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transformations and rewrite the action in terms of nV −nL
massless and nL massive vector multiplets. Finally, in the
appendix we present the supersymmetry transformations
of the chiral spinor multiplet and give a modification of
these transformations that preserves the WZ gauge. This
allows us to discuss the order parameters for supersymme-
try breaking.

2 Spinor superfields coupled to vector
and chiral multiplets

In N = 1 supersymmetry an antisymmetric tensor Bmn
is part of a chiral spinor superfield Φα, while its three-
form field strength Hmnp resides in a linear multiplet L.
In this section, we consider a set of nL linear multiplets
LI and the corresponding nL chiral spinor multiplets Φ

I
α,

I = 1, . . . , nL. We review some of their properties and con-
struct a gauge invariant action.
The linear multiplet is a real superfield, defined by the

constraint [22]

D2LI = D̄2LI = 0 , (1)

where Dα is the superspace covariant derivative.
1 The

θ expansion of LI reads

LI = CI + θηI + θ̄η̄I +
1

2
θσmθ̄εmnpqH

npqI

−
i

2
(θθ)θ̄σ̄m∂mη

I −
i

2
(θ̄θ̄)θσm∂mη̄

I −
1

4
θθθ̄θ̄�CI .

(2)

Here CI are real scalars, ηI areWeyl fermions andHImnp =
∂[mB

I
np] are the field strengths of the antisymmetric ten-

sors BInp.
Each antisymmetric tensor BImn is contained in a chiral

spinor superfield ΦIα defined by [22]

LI =
1

2

(
DαΦIα+ D̄α̇Φ̄

α̇I
)
, D̄β̇Φ

I
α = 0 . (3)

The ΦIα enjoy the θ expansion

ΦIα = χ
I
α− θγ

(
1

2
δγα(C

I + iEI)+
1

4
(σmσ̄n)α

γ
BImn

)

+ θθ
(
ηIα+ iσαα̇

m∂mχ̄
α̇I
)
, (4)

where χIα are additional Weyl fermions and E
I additional

scalars. Due to its definition (3) the LI are invariant under
the gauge transformations

ΦIα −→ Φ
I
α+
i

8
D̄2DαΛ

I , (5)

1 Throughout the paper we are using the conventions of [32].

where the ΛI are real superfields. The expressions D̄2DαΛ
I

are chiral and we therefore can write2

i

8
D̄2DαΛ

I

=−
1

2
λ̂Iα−

(
δγα
i

2
D̂I +

1

4
(σmσn)γα

(
∂mΛ

I
n−∂nΛ

I
m

)
)
θγ

−
i

2
θθmσmαα̇∂m

¯̂
λ
α̇I

. (6)

We immediately see that the fields χIα and E
I defined in

the θ-expansion of the superfield ΦIα in (4) can be gauged
away by λ̂Iα and D̂

I using (5). This leaves only the physi-
cal degrees of freedom CI , BImn and η

I in the component
expansion of ΦIα. Thus in this WZ gauge we have

ΦIα =−θγ

(
1

2
δγαC

I +
1

4
(σmσ̄n)γαB

I
mn

)
+ θθηIα , (7)

and the left-over gauge invariance is the standard two-form
gauge invariance

BImn→B
I
mn+∂mΛ

I
n−∂nΛ

I
m , C

I → CI , ηIα→ η
I
α .
(8)

The superfields ΦIα and L
I can be used to construct

a gauge invariant action. The kinetic term is given by

Lkin =−

∫
d2θd2θ̄K(LI) , (9)

where K(LI) is an arbitrary real function of the LI . In
components, (9) reads

Lkin =−
1

4
KIJ

(
(
∂mC

J
)
(∂mCI)

+ i
(
ηIσm∂mη̄

J + η̄I σ̄m∂mη
J
)
+
3

2
HmnpIHImnp

)

−
1

8
KIJK

(
ηKσmη̄IεmnpqH

npqJ
)

−
1

4!
KIJKL

(
3

2
ηIηJ η̄K η̄L

)
, (10)

where we abbreviated

KIJ...K ≡
∂nK(C)

∂CI∂CJ . . . ∂CK
. (11)

In addition to the kinetic term we can add a mass term
for the BImn if we introduce a set of Abelian vector multi-
plets V A, A = 1, . . . , nV . As we will see they can be used
to ensure the gauge invariance (8) and they also provide
the necessary degrees of freedom in order to render the

2 The expansion has the same structure as the field strength
of the vector multiplet that we introduce in (12). To avoid con-
fusion with (12) we have hatted the corresponding component
fields of (6).
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BImn massive. Let us denote the field strengths of the vec-
tor multiplets byWAα =−

1
4D̄
2DαV

A, with the component
expansion

WAα =−iλ
A
α +

(
δβαD

A−
i

2
(σmσ̄n)βαF

A
mn

)
θβ

+ θθσmαα̇∂mλ̄
α̇A . (12)

Here FAmn = ∂mv
A
n −∂nv

A
m are the field strengths of nV

U(1) gauge bosons vAn .
3 The linear combination

2imAJ Φ
J
β −W

A
β (13)

is gauge invariant under (5), provided we assign the follow-
ing transformation laws to the V A:

V A→ V A+mAJΛ
J , WAβ →W

A
β −
1

4
mAJ D̄

2DβΛ
J .

(14)

In (13) and (14) we have introduced the constant coup-
ling matrix mAJ , which we demand to be real. The linear
combination (13) can be used to build (Lorentz and gauge
invariant) mass terms for ΦJβ . However, this is not the only
possible gauge invariant term. Permitting the Lagrangian
to be invariant only up to a total derivative we can also add
the term 2

∫
d2θeAIΦ

I(WA− imAJ Φ
J )+h.c., where eAI is

a constant real matrix. Note that in this expression only
the symmetric part of the product eAIm

A
J appears. The

gauge invariance of this additional term can most easily be
seen by first rewriting the term as

−2

∫
d4θeAIL

IV A−

(
i

∫
d2θeAIm

A
J Φ
IΦJ +h.c.

)
,

(15)

where we used d2θ =− 14D
2, (3) and the definition ofWα.

Using (5) and (14) we perform the gauge transformations
on (15). For the first term we obtain

δ

∫
d4θ(−2eAIL

IV A) =−2

∫
d4θeAIm

A
J L
IΛJ (16)

as δLI = 0. Transformation of the second term reads

δ

∫
d2θ
(
− ieAIm

A
J Φ
IΦJ
)
+h.c.

=−i

∫
d2θeAIm

A
J

(
i

4
ΦID̄2DΛJ

)
+h.c.

=−

∫
d4θeAIm

A
J (Φ

I(DΛJ)+ Φ̄I(D̄ΛJ))

= 2

∫
d4θeAIm

A
JΛ
JLI +total derivative , (17)

where (3) and the chirality of Φ have been used. In (17)
again only the symmetric part of eAIm

A
J enters, while

the variation in (16) contains also the antisymmetric part.

3 WAα is invariant under the standard U(1) gauge invariance
V A→ V A+ΣA+ Σ̄A, where the ΣA are chiral superfields.

Therefore, gauge invariance of (15) requires one to im-
pose the condition eAIm

A
J = eAJm

A
I .
4 Thus the most gen-

eral gauge invariant action of nL massive spinor multiplets
coupled to nV vector multiplets is given by

Lm =
1

4

∫
d2θ
(
fAB
(
2imAI Φ

I −WA
)(
2imBJ Φ

J −WB
)

+2eAIΦ
I
(
WA− imAJ Φ

J
))
+h.c. (18)

The matrix fAB is the gauge coupling function of the
vector multiplets, which can depend holomorphically on
additional chiral multiplets, which we denote by N i, i =
1, . . . , nC .

5 The Lagrangian (18) is our first result, which
coincides with the Lagrangian of [10, 11] in the limit of
one linear multiplet, and which was also given previously
in [12].
In components the Lagrangian (18) reads

Lm =−
1

4
Re fABF̌

A
mnF̌

Bmn+
1

8
Im fABε

klmnF̌Akl F̌
B
mn

−
1

16
εklmneAIB

I
kl

(
F̌Amn+F

A
mn

)
+
1

2
Re fABD

ADB

−
1

2

(
eAI +2 ImfABm

B
I

)
CIDA

−
1

2
Re fABm

A
I m

B
J C

ICJ −
i

2
fABλ

Aσm∂mλ̄
B

−
i

2
f̄ABλ̄

Aσ̄m∂mλ
B−
1

2

(
ieAI +2fABm

B
I

)
ηIλA

−
1

2

(
− ieAI +2f̄ABm

B
I

)
η̄I λ̄A

−
1

2
√
2
∂ifAB

(
mAI C

I − iDA
)
χiλB

−
1

2
√
2
∂īf̄AB

(
mAI C

I + iDA
)
χ̄īλ̄B

−
1

2
√
2
∂ifABF̌

A
mnχ

iσmnλB

−
1

2
√
2
∂īf̄ABF̌

A
mnχ̄

īσ̄mnλ̄B−
1

4
F i∂ifABλ

AλB

−
1

4
F̄ ī∂īf̄ABλ̄

Aλ̄B+
1

8
χiχl∂i∂lfABλ

AλB

+
1

8
χ̄īχ̄l̄∂ī∂l̄f̄ABλ̄

Aλ̄B , (19)

where we defined

F̌Amn ≡ F
A
mn−m

A
I B

I
mn (20)

and used as the component expansion of N i

N i =Ai+
√
2θχi+ θθF i ,

fAB(N) = fAB(A)+
√
2θχi∂ifAB(A)

+ θθ

(
F i∂ifAB(A)−

1

2
χiχj∂i∂jfAB(A)

)
.

(21)

4 We thank U. Theis for discussions on this point.
5 Of course, we also need to add kinetic terms for the N i, but
since they play no role here we omit them in the following.
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(We abbreviate ∂i ≡
∂
∂Ai
.) The auxiliary fields DA may be

eliminated by their equations of motion

DA =
1

2
(Re f)−1AB

(
(
eBI +2 ImfBCm

C
I )C

I

−
i
√
2

(
∂ifBCχ

iλC−∂īf̄BCχ̄
īλ̄C
))
. (22)

Inserting (22) into (19) we obtain

Lm =−
1

4
Re fABF̌

A
mnF̌

Bmn+
1

8
Im fABε

klmnF̌Akl F̌
B
mn

−
1

16
εklmneAIB

I
kl

(
F̌Amn+F

A
mn

)
−V

−
1

2

(
ieAI +2fABm

B
I

)
ηIλA

−
1

2

(
− ieAI +2f̄ABm

B
I

)
η̄I λ̄A−

i

2
fABλ

Aσk∂kλ̄
B

−
i

2
f̄ABλ̄

Aσ̄k∂kλ
B−

1

2
√
2
∂kfABm

A
I C

IχkλB

−
1

2
√
2
∂k̄f̄ABm

A
I C

I χ̄k̄λ̄B

+
i

4
√
2
(Re f)−1AB

×
(
∂lfAGχ

lλG−∂l̄f̄AGχ̄
l̄λ̄G
)(
eBI +2 ImfBCm

C
I

)
CI

+
1

16
(Re f)−1AB

×∂kfBC
(
∂lfAGχ

lλG−∂l̄f̄AGχ̄
l̄λ̄G
)
χkλC

+
1

16
(Re f)−1AB

×∂k̄f̄BC
(
∂l̄f̄AGχ̄

l̄λ̄G−∂lfAGχ
lλG
)
χ̄k̄λ̄C

−
1

2
√
2
∂kfABF̌

A
mnχ

kσmnλB

−
1

2
√
2
∂k̄f̄ABF̌

A
mnχ̄

k̄σ̄mnλ̄B−
1

4
F k∂kfABλ

AλB

−
1

4
F̄ k̄∂k̄f̄ABλ̄

Aλ̄B+
1

8
χkχl∂k∂lfABλ

AλB

+
1

8
χ̄k̄χ̄l̄∂k̄∂l̄f̄ABλ̄

Aλ̄B , (23)

where the scalar potential is given by

V =
1

8

(
(Re f)−1AB

×
(
eAI +2 Im fACm

C
I

)(
eBJ +2 Im fBDm

D
J

)

+4Re fABm
A
I m

B
J

)
CICJ . (24)

In order to make the contribution from the D-terms mani-
fest we can alternatively write the potential as

V =
1

2
Re fABD

ADB+
1

2
Re fABm

A
I m

B
J C

ICJ (25)

for DA = 1
2 (Re f)

−1AB(eBI +2 Im fBCm
C
I )C

I . We see
that there is a contribution to the mass terms for the
scalarsCI that does not arise from eliminating an auxiliary
field.

For generic charges eBJ ,m
D
J (i.e. these are non-zero)

the minimum of V is at CI = 0. This follows from the fact
that Re fAB is the gauge kinetic function and therefore is
positive definite. As a consequence, both terms in (24) are
manifestly positive.
To close our discussion of the Lagrangian (18) let us ex-

plicitly display the mass terms for the BImn. Using (20) we
can write

LB2m =−
1

4
(M2)IJB

ImnBJmn

+
1

8

(
M2T
)
IJ
εklmnBIklB

J
mn ,

(M2)IJ =Re fABm
A
I m

B
J ,

(
M2T
)
IJ
= Im fABm

A
I m

B
J +
1

2
eAIm

A
J . (26)

As we see the action contains an ordinary mass termM2 as
well as a topological mass termM2T. Form

A
I = 0 both mass

terms vanish, and a massless antisymmetric tensor with
a Green–Schwarz coupling of the form eAIε

mnpqFAmnB
I
pq is

left.

3 Dual formulation

So far we have discussed the possible couplings of a set of
spinor superfields to Abelian vector and chiral multiplets.
In components this led to massive antisymmetric tensors
possibly with additional Green–Schwarz couplings. It is
well known that theories with antisymmetric tensors have
an equivalent dual formulation: a massive antisymmetric
tensor is dual to a massive vector, while a massless anti-
symmetric tensor is dual to a scalar. The purpose of this
section is to derive the dual of the theories discussed in
the previous section. More specifically, we perform a dual-
ity transformation in superfields and then expand the dual
action in components. As a warm-up we first consider the
massless case with non-trivial Green–Schwarz couplings
(mAI = 0, eAI �= 0) and then turn to the general case, in
which alsomAI �= 0.

3.1 Massless tensors with Green–Schwarz couplings

FormAI = 0 the action given by (18) and (9) can be rewrit-
ten as

L=−

∫
d4θ
(
K(LI)+ eAIL

IV A
)

+
1

4

(∫
d2θfABW

AWB+h.c.

)
, (27)

where we partially integrated using the definition of WAα ,
(3) and d2θ̄ =− 14D̄

2. We see that the entire action is ex-
pressed in terms of linear multiplets only, and no mass
term for the antisymmetric tensors is present. The La-
grangian (27) can be derived from the following first-order
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Lagrangian:

Lfirst =−

∫
d4θ
(
K(V 0I)+ eAIV

0IV A+V 0I
(
SI + S̄I

))

+
1

4

(∫
d2θfABW

AWB+h.c.

)
, (28)

where the V 0I denote nL real vector (but not linear) super-
fields, and SI are nL chiral superfields. Eliminating the SI
by their equations of motion, we find

D̄2V 0I =D2V 0I = 0 , (29)

where we used that a chiral SI can always be written in
terms of an unconstrained superfield XI via SI = D̄

2XI .
From (29) we learn that V 0I is constrained to be a linear
superfield and thus can be identified as

V 0I = LI . (30)

Inserted back into (28) using
∫
d4θLI(SI + S̄I) = 0, we fi-

nally arrive at (27).
If we eliminate the V 0I instead we obtain the dual the-

ory in terms of the chiral multiplets SI . The equation of
motion for V 0I reads

∂V 0KK(V
0I)+ eAKV

A+SK+ S̄K = 0 . (31)

With the help of (31) we can express V 0K as a function of
eAKV

A+SK + S̄K and possibly of the other V
0I , I �=K.

Let us denote this function by hK , i.e.

V 0K ≡ hK
(
V 0I , eAKV

A+SK+ S̄K
)
. (32)

The precise relation will of course depend on the particular
form ofK(V 0I). We may now rewriteK in terms of hK and
replace it by its Legendre transform K̂,

−K̂
(
eAIV

A+SI+ S̄I
)
=K(hJ)+

(
eAIV

A+SI + S̄I
)
hI ,

(33)

which, due to (31), is a function of eAKV
A+SK+ S̄K . In-

serted into (28) we finally arrive at

L=

∫
d4θK̂

(
eAIV

A+SI+ S̄I
)

+
1

4

(∫
d2θfABW

AWB+h.c.

)
. (34)

L is the dual Lagrangian of (27), which is expressed in
terms of nV vector multiplets V

A and nL chiral multiplets
SI .
In the original formulation given in (27), the gauge in-

variance of the vector multiplets

V A→ V A+ΣA+ Σ̄A, D̄α̇Σ
A = 0 (35)

is manifest, since the entire action is expressed in terms of
the gauge invariant field strength WA. In the dual formu-
lation (35) has to be accompanied by a shift of the chiral
multiplets,

SI → SI − eAIΣ
A. (36)

We see that the SI play the role of Goldstone supermul-
tiplets, which are necessary in order to maintain the U(1)
gauge invariance. Thus the first term in (34) corresponds to
a mass term for the vector fields, while the second term is
the standard kinetic term. In order to see this more explic-
itly let us expand the Lagrangian (34) in components. We
take V A in a Wess–Zumino gauge and expand accordingly

V A =−θσmθ̄vAm+ iθθθ̄λ̄
A− iθ̄θ̄θλA+

1

2
θθθ̄θ̄DA ,

SI =
1

2
EI +

√
2θψI + θθFI . (37)

Inserted into (34), we arrive at

L=−
1

4
Re fABF

AmnFBmn+
1

8
Im fABε

mnprFAmnF
B
pr

+
1

2
Re fABD

ADB

−
i

2

(
fABλ

Aσm∂mλ̄
B− f̄AB∂mλ

Aσmλ̄B
)

+
i

2
√
2
∂ifABD

AχiλB−
i

2
√
2
∂īf̄ABD

Aχ̄īλ̄B

−
1

2
√
2
∂ifABF

A
mnχ

iσmnλB−
1

2
√
2
∂īf̄ABF

A
mnχ̄

īσ̄mnλ̄B

−
1

4
F i∂ifABλ

AλB −
1

4
F̄ ī∂īf̄ABλ̄

Aλ̄B

+
1

8
χiχj∂i∂jfABλ

AλB+
1

8
χ̄īχ̄j̄∂ī∂j̄fABλ̄

Aλ̄B

+
1

2
K̂IeAID

A+
1

4
K̂IJKLψ

IψJ ψ̄Kψ̄L

+ K̂IJ

{
−
1

4
∂m(ReEI)∂m(ReEJ )

−
1

4

(
∂m(ImEI)+ eAIv

Am
)(
∂m(ImEJ )+ eBJv

Bm
)

+
i
√
2
eAI
(
ψJλ

A− ψ̄J λ̄
A
)

−
i

2

(
ψJσ

m∂mψ̄I + ψ̄J σ̄
m∂mψI

)
+FIF̄J

}

+
1

2
K̂IJK

{
−ψIσ

mψ̄J
(
eAKv

Am+∂m(ImEK)
)

− (ψIψJ)F̄K −
(
ψ̄I ψ̄J

)
FK
}
, (38)

where we abbreviate K̂I = ∂ReEI K̂. As promised, we see
that the real scalars (ImEK) play the role of nL Goldstone
bosons, which render the linear combinations eAKv

Am of
the nL vector fields v

Am massive.
Eliminating the auxiliary fields FI and D

A by their
equations of motion, we arrive at the following bosonic
action:

Lb =−
1

4
Re fABF

AmnFBmn+
1

8
Im fABε

mnprFAmnF
B
pr

−
1

4
K̂IJ
(
∂m(ReEI)∂m(ReEJ )+ eAIeBJv

A
mv
Bm
)

−V , (39)

where we have chosen the unitary gauge and absorbed
ImEK into a redefinition of v

A
m. The scalar potential is of
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the standardN = 1 form and is given by

V =
1

2
Re fABD

ADB =
1

8
(Re f)−1CDeCIeDJK̂IK̂J .

(40)

This potential agrees with the one given in (25) for
mAI = 0 if one also identifies K̂I =−C

I . For this substitu-
tion also the kinetic terms of the scalars CI and (ReEI)
agree. Indeed starting from − 14KIJ(∂mC

J )(∂mCI)
and using the above identification, we arrive at
− 14K̂IJ(∂

mReEI)(∂mReEJ ), taking into account that
due to (33) we have ∂ReEKKJ =−δ

J
K .

3.2 Massive antisymmetric tensors

Let us now turn on the couplings mAI and repeat the an-
alysis of the previous section. In this case we start from the
first-order Lagrangian

Lfirst =

∫
d4θ

{
K̂(Ṽ I)−

1

2
Ṽ I
(
DαΦIα+ D̄α̇Φ̄

Iα̇
)}
+Lm ,

(41)

where Lm is given in (18). K̂ is a real function of the vec-
tor multiplets Ṽ I , which will turn out to be the Legendre
transform ofK.
Let us first show that from (41) one can derive the La-

grangian for nL massive linear multiplets as given by the
sum of (18) and (9). To do so, we vary (41) with respect to
Ṽ J and obtain

∂
˜V J
K̂(Ṽ I) =

1

2

(
DαΦJα+ D̄α̇Φ̄

Jα̇
)
= LJ . (42)

For appropriate K̂, (42) may be solved giving Ṽ J as a func-
tion of LJ and Ṽ I , I �= J . We shall denote this function by
hK = hK(LK , Ṽ I) ≡ Ṽ K . As in the massless case we can
express K̂ in terms of the hK . Together with (42), this leads
us from (41) to

L=

∫
d4θ{K̂(hK)−hILI}+Lm . (43)

Due to (42) the expression−K(LI) := K̂(hI)−hJLJ is the
Legendre transform of K̂(hI) with respect to all hI , i.e., it
is a function only of the LI . Substituting K(LI) into (43)
we have arrived at the Lagrangian for nL massive linear
multiplets as stated above.
Alternatively, we can eliminate the ΦIα multiplets, and

this yields the desired dual action. To do so, let us first
rewrite (41) as

Lfirst =

∫
d4θK̂(Ṽ I)+

1

4

∫
d2θfABW

AWB+h.c.

+

∫
d2θ

{
ΦI
(
1

2
W̃ I +

1

2
eAIW

A− ifABm
B
I W

A

)

−µ2IJΦ
IΦJ
}
+h.c. , (44)

where W̃ J =− 14D̄
2DṼ J is the field strength of Ṽ J , and we

have performed a partial integration. We also introduced
the mass matrix

µ2IJ := (M
2)IJ + i(M

2
T )IJ , (45)

with M2 and M2T being defined in (26). The equation of
motion for Φα can be obtained from (44) by using again
Φα = D̄

2Xα. Demanding µ
2
IJ to be invertible we arrive at

ΦIα =
1

2
(µ2)−1IK

(
1

2
W̃Kα +

1

2
eAKW

A
α − ifABm

B
KW

A
α

)
.

(46)

Inserting this back into (41), we obtain

L=

∫
d4θK̂(Ṽ i)+

1

4

∫
d2θf̂ÂB̂W

ÂW B̂+h.c. , (47)

where we have introduced W Â :=
(
− 12W̃

I ,WA
)
. So the

index Â takes values Â= (I,A) = (1, . . . , nL, nL+1, . . . , nL+
nV ). Furthermore, the (nV +nL)× (nV +nL)-dimensional
gauge coupling matrix f̂ÂB̂ is given by

f̂ÂB̂ =

(
f̂IJ f̂IB

f̂AJ f̂AB

)

, (48)

where

f̂IJ = (µ
2)−1IJ , f̂IA = (µ

2)−1IK

(
−
1

2
eAK+ ifADm

D
K

)
,

f̂AB = fAB+(µ
2)−1IJ

(
−
1

2
eAI + ifADm

D
I

)

×

(
−
1

2
eBJ + ifBCm

C
J

)
. (49)

The term K̂(Ṽ I) in the Lagrangian (47) contains mass
terms for nL vector multiplets. Thus the Lagrangian (47)
appears to depend on nV massless and nL massive vec-
tor multiplets. However, nL of the original nV vector fields
are now unphysical. This can be seen from the fact that
the gauge coupling matrix Re f̂ÂB̂ has nL zero eigenval-

ues, while Im f̂ÂB̂ has nL constant eigenvalues. Or, in other
words, nL of the vector fields only have a topological coup-
ling but no kinetic term. Indeed, using (26) and (45) it is
easy to verify that

f̂IBm
B
K = iδIK , f̂ABm

B
K =−

i

2
eAK . (50)

This shows that the nL vectors (0, . . . , 0,m
B
K) are eigenvec-

tors of Re f̂ÂB̂ with eigenvalue zero.

In order to display the physical components of Ṽ we de-
compose it into a vectormultiplet V 0I in theWZ gauge and
the real part of a chiral superfield SI

Ṽ I := V 0I +SI + S̄I . (51)
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The component form of (47) can then be obtained by in-
serting the Wess–Zumino gauge (37) for V 0I , while for the
chiral multiplets SI we use

SI =
1

2
AI +

√
2θψI +

i

2
θσmθ̄∂mAI + θθFI

−
i
√
2
θθ∂mψIσ

mθ̄+
1

4
θθθ̄θ̄�

1

2
AI . (52)

Inserting this into (47), we arrive at

L=−
1

4
Re f̂ÂB̂F

ÂmnF B̂mn+
1

8
Im f̂ÂB̂ε

klmnF ÂklF
B̂
mn

+
1

2
Re f̂ÂB̂D

ÂDB̂+
1

2
K̂ID

0I −
1

4
K̂IJv

0Imv0Jm

−
1

4
K̂IJ∂

m(ReAI)∂m(ReAJ )− K̂IJFI F̄J

−
i

2

(
f̂ÂB̂λ

Âσk∂kλ̄
B̂+
¯̂
f ÂB̂λ̄

Âσ̄k∂kλ
B̂
)

+
1

2
K̂IJ
{
i
√
2
(
ψJλ

0I − ψ̄J λ̄
0I
)

− i
(
ψJσ

m∂mψ̄I + ψ̄J σ̄
m∂mψI

)}

+
1

2
K̂IJK

{
−ψIσ

mψ̄Jv
0K
m − (ψIψJ)F̄K −

(
ψ̄I ψ̄J

)
FK
}

+
1

4
K̂IJKLψIψJ ψ̄K ψ̄L+ . . . , (53)

where K̂I = ∂ReAI K̂ was used, and terms proportional to

∂if̂ÂB̂ have been neglected.
The next step is to eliminate the auxiliary fields from

the Lagrangian. The equations of motion for FI can be de-
termined in a straightforward manner to be

FI =
1

2
K̂−1IL K̂LJKψJψK . (54)

ForDÂ, however, the situation is more difficult, since some
of the vector multiplets are unphysical. In order to remove
the unphysical degrees of freedom we fix the gauge invari-
ance of (46).
To this aim let us rewrite (46) in the following way:

ΦIβ =−
1

2
RIK

{
−
1

2
W̃K −

(
1

2
eAK+Im fABm

B
K

)
WA

+R−1KLILJ Re fABm
B
JW

A

}

+
i

2
IIK

{
1

2
W̃K+

(
1

2
eAK+Im fABm

B
K

)
WA

− I−1KLRLJ Re fABm
B
JW

A

}
, (55)

where we divided the coupling matrices of (46) into their
real and imaginary parts, and we abbreviated

RIK = [Re((µ
2)−1)]IK

and

IIK = [Im((µ
2)−1)]IK . (56)

Going to the WZ gauge (7) for ΦI , we see that the θ-
component of the imaginary part of the right hand side
of (55) has to vanish. This implies

D0K =−
(
eAK+2 ImfABm

B
K

)
DA

+2I−1KLRLJ Re fABm
B
JD

A+ . . . , (57)

where we have omitted the fermionic terms. We can now
use the constraint (57) to eliminate the D0K from the La-
grangian. Let us concentrate on the bosonic terms, which
we read off from (53) to be

V =−
1

2
Re f̂ÂB̂D

ÂDB̂−
1

2
K̂ID

0I . (58)

Inserting (49) and (57) and usingDÂ =
(
− 12D

0K , DA
)
, we

obtain the following equation of motion forDA:

{
RIJI

−1
JKI

−1
INRKLRNS Re fAC Re fBDm

C
Lm

D
S

+RIJ Re fAC Re fBDm
C
I m

D
J +Re fAB

}
DB

=−K̂K

{
−

(
1

2
eAK+Im fACm

C
K

)

+ I−1KLRLJ Re fACm
C
J

}
. (59)

The inverse of the matrix multiplying DB is found to be

(Re f)−1EA−RTUm
E
Tm

A
U , (60)

which implies

DE = K̂K(Re f)
−1EA

(
1

2
eAK+Im fACm

C
K

)
. (61)

Inserting (54) and (61) back into (53), we arrive at

L=−
1

4
Re f̂ÂB̂F

ÂmnF B̂mn+
1

8
Im f̂ÂB̂ε

klmnF ÂklF
B̂
mn

−
1

4
K̂IJv

0Imv0Jm −
1

4
K̂IJ∂

m(ReAI)∂m(ReAJ )

−
i

2

(
f̂ÂB̂λ

Âσk∂kλ̄
B̂+
¯̂
f ÂB̂λ̄

Âσ̄k∂kλ
B̂
)

+
1

2
K̂IJ
{
i
√
2
(
ψJλ

0I − ψ̄J λ̄
0I
)

− i
(
ψJσ

m∂mψ̄I + ψ̄J σ̄
m∂mψI

)}

−
1

2
K̂IJKψIσ

mψ̄Jv
0K
m

+
1

4

(
K̂IJKL− K̂IJMK̂

−1
MSK̂KLS

)
ψIψJ ψ̄Kψ̄L

−V + . . . , (62)

where the scalar potential is given by

V =
1

8

{(
eAI +2 Im fACm

C
I

)

×Re f−1AB
(
eBJ +2 Im fBDm

D
J

)

+4Re fABm
A
I m

B
J

}
K̂IK̂J . (63)
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This potential indeed coincides with (25) for CI = K̂I . For
this identification also the kinetic terms agree, which sim-
ply expresses the fact that K and K̂ are related by a Leg-
endre transformation. Thus (62) is the desired dual action
of (23).

4 Conclusion

Let us summarize our results. We proposed an N = 1 su-
perfield action for nL chiral spinor superfields coupled to
nV vector and nC chiral multiplets. The component form
of this action was given and shown to contain gauge invari-
ant mass terms for nL antisymmetric tensors. In addition,
the action also features Green–Schwarz couplings to the nV
vector fields. Supersymmetry gives a mass to the super-
symmetric partners CI of the antisymmetric tensors with
the peculiarity that these mass terms do not arise from
eliminating an auxiliary field. Indeed, the supersymme-
try transformation laws show that any Lorentz invariant
ground state of the spinor superfield preserves supersym-
metry. Instead the supersymmetry transformations of the
vector multiplets are modified, and a vacuum expectation
value of the scalarsCI can break supersymmetry by gener-
ating a non-vanishing gaugino transformation.
We also constructed the dual action in terms of nL mas-

sive and nV −nL massless vector multiplets by explicitly
performing the duality transformations in superspace. We
gave the component form of the dual action and showed
that the scalar potentials in both formulations coincide.
For one chiral spinor superfield, the action agrees with

the action given in [10, 11], which also appeared in Kaluza–
Klein reduction of type IIB string theory compactified on
Calabi–Yau orientifolds [16].
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Appendix: Modified SUSY transformations
of the chiral spinor superfield

In this appendix we derive the supersymmetry transform-
ation laws of a chiral spinor superfield in the WZ gauge.
The main motivation for this exercise is to identify the
order parameters for spontaneous supersymmetry break-
ing. For simplicity, we perform this analysis for a single Φα.
The general supersymmetry transformation ofΦα reads

Φα→ Φ
′
α = Φα+ δξΦα = Φα+(ξQ+ ξ̄Q̄)Φα , (A.1)

where Q and Q̄ are the supersymmetry generators. In
terms of the component expansion (4), we have

δξχα =−ξγ

(
1

2
δγα(C+ iE)+

1

4
(σmσ̄n)γαBmn

)
,

δξC = ξ
αηα+ ξ̄α̇η̄

α̇ ,

δξE =−iξ
αηα+ iξ̄α̇η̄

α̇

+2
(
ξβσmβα̇∂mχ̄

α̇− ξ̄α̇σ̄
mα̇β∂mχβ

)
,

δξB
mn = 2ηα(σmn)βαξβ+2η̄α̇(σ̄

mn)α̇
β̇
ξ̄β̇

+2i
(
ξβσmβα̇∂

nχ̄α̇− ξβσnβα̇∂
mχ̄α̇
)

+2i
(
ξ̄α̇σ̄

mα̇β∂nχβ− ξ̄α̇σ̄
nα̇β∂mχβ

)
,

δξηα = iσ
k
αα̇ξ̄

α̇∂kC−
1

2
εkmnrσrαα̇ξ̄

α̇∂kBmn . (A.2)

In the WZ gauge we choose χα = 0 and E = 0, and thus
(A.2) becomes

δξ,WZχα =−ξγ

(
1

2
δγαC+

1

4
(σmσ̄n)γαBmn

)
,

δξ,WZC = ξη+ ξ̄η̄ ,

δξ,WZE =−iξη+ iξ̄η̄ ,

δξ,WZB
mn = 2ησmnξ+2η̄σ̄mnξ̄ ,

δξ,WZηα = i(σ
k ξ̄)α∂kC−

1

2
εkmnr

(
σr ξ̄
)
α
∂kBmn .

(A.3)

We see that χα and E do not transform to zero, and, there-
fore, one needs a compensating gauge transformation to
stay in the WZ gauge. These are given in (5) and (6), and
so we are led to choose

λeα =−ξγ

(
1

2
δγαC+

1

4
(σmσ̄n)γαBmn

)
,

De = iξη− iξ̄η̄ . (A.4)

This ensures (δξ,WZ+δgauge)χ= 0= (δξ,WZ+δgauge)E and
modifies the transformations of the physical fields accord-
ing to

(δξ,WZ+ δgauge)C = ξη+ ξ̄η̄ ,

(δξ,WZ+ δgauge)B
mn = 2ησmnξ+2ξ̄σ̄nmη̄

+∂mΛen−∂nΛem ,

(δξ,WZ+ δgauge)ηα = i(σ
k ξ̄)α∂kC

−
1

2
εkrmn

(
σr ξ̄
)
α
∂kBmn .

(A.5)

We see that in a Lorentz invariant ground state super-
symmetry cannot be broken by any of these transform-
ations. However, in a WZ gauge the transformation laws
of the charged multiplets also change. For the case at
hand these are the transformations of the vector multiplet,
which without couplings to a spinor superfield read

δξFmn = i
[(
ξσn∂mλ̄+ ξ̄σ̄

n∂mλ
)
−
(
ξσm∂nλ̄+ ξ̄σ̄

m∂nλ
)]
,

δξλα = iξαD+(σ
mnξ)αFmn ,

δξD = ξ̄σ̄
m∂mλ− ξσ

m∂mλ̄ . (A.6)

Gauge invariance of the couplings to the spinor super-
field forces the gauge fields to transform according to (14).
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Thus, with the special choice (A.4) we obtain for the com-
bined supersymmetry and gauge transformations

(δξ+ δgauge)λα =−mξγ
(
δγαC+

1

2
(σmσ̄n)γαBmn

)

+ iξαD+(σ
mnξ)αFmn ,

(δξ+ δgauge)D =m(iξη− iξ̄η̄)+ ξ̄σ̄
m∂mλ− ξσ

m∂mλ̄ ,

(δξ+ δgauge)Fmn = i
[(
ξσn∂mλ̄+ ξ̄σ̄

n∂mλ
)

−
(
ξσm∂nλ̄+ ξ̄σ̄

m∂nλ
)]
+mF emn .

(A.7)

As one can see supersymmetry can be broken in (A.7) if
either C or D acquire a vacuum expectation value that is
different from zero.
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