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Abstract. We derive the action for ny, > 1 chiral spinor multiplets coupled to vector and scalar multiplets.
We give the component form of the action, which contains gauge invariant mass terms for the antisymmetric
tensors in the spinor superfield and additional Green—Schwarz couplings to vector fields. We observe that
supersymmetry provides mass terms for the scalars in the spinor multiplet that do not arise from eliminat-
ing an auxiliary field. We construct the dual action by explicitly performing the duality transformations in

superspace and give its component form.

1 Introduction

Antisymmetric tensor fields B,,, naturally appear in the
light sector of all string theories. In four space-time di-
mensions (D = 4) massless antisymmetric tensors are dual
to scalar fields, while massive tensors are dual to massive
vectors. Therefore, in the low energy effective action one
has the choice to represent these degrees of freedom in ei-
ther of two dual representations. Depending on the context
one formulation might be more convenient than the other,
and for this reason both formulations have generically been
developed.

Recently compactification with background fluxes
and/or compactifications on generalized geometries have
been studied in detail; for recent reviews, see, for ex-
ample, [1-3]. One novelty in these compactifications is
the appearance of massive antisymmetric tensors [4]. As
a consequence their description in terms of appropriate
supergravities has been worked out [5-15]. In particular
in N =1 compactifications of type IIB on Calabi-Yau
orientifolds with O5- or O9-planes a massive antisym-
metric tensor appears when both electric and magnetic
three-form fluxes are turned on [16]. The corresponding
N = 1 superspace action was constructed in [10, 11]. Orien-
tifolds of generalized geometries, as discussed for example
in [17-20], can feature more than one antisymmetric ten-
sor. Therefore, it is of interest to generalize the analysis
of [10,11] and discuss the couplings of a set of nz, massive
antisymmetric tensors to vector and chiral multiplets. This
is the purpose of the present paper.

In N =1 supersymmetry the three-form field strength
of the antisymmetric tensor is part of a linear multi-
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plet L [21-29]. The antisymmetric tensor itself resides
in the chiral spinor multiplet @,. Whenever the anti-
symmetric tensor is massless the supersymmetric ac-
tion is described in terms of L only. Any mass term
for B,,, destroys the two-form gauge invariance. How-
ever, with the help of appropriate couplings to vec-
tor fields gauge invariance can be restored. The result-
ing Lagrangian is of the Stiickelberg type [30,31], in
which the vector fields provide the ‘longitudinal’ degrees
of freedom to render B,,, massive. Put differently, in
a unitary gauge the antisymmetric tensor ‘eats’ a vec-
tor field and becomes massive. A similar mechanism
can be employed for ny antisymmetric tensors as long
as enough (ny >nyr) vector fields are coupled. There-
fore, the first goal of this paper is the derivation of
a N =1 superspace action for ny chiral spinor multi-
plets ®. I =1,...,nr, coupled to ny vector multiplets
VA A=1,...,ny. Furthermore, the gauge couplings of
the vector multiplets are allowed to depend on n¢ chiral
multiplets N, i=1,...,nc.

As we already stated, a massless antisymmetric tensor
is dual to a scalar, while a massive one is dual to a massive
vector. This duality is also manifest at the level of super-
fields, where a linear multiplet is dual to a chiral multiplet,
while a massive spinor multiplet is dual to a massive vec-
tor multiplet. Thus our second aim is to construct the dual
theory in superspace.

This paper is organized as follows. In Sect. 2 we intro-
duce the notions of the linear and the chiral spinor multi-
plet. By means of the Stiickelberg mechanism we construct
the most general gauge invariant action for n; massive
spinor multiplets and give its corresponding component
form. We discuss the resulting scalar potential, which has
not the standard NV =1 form due to a contribution from the
chiral spinor multiplet. In Sect. 3 we perform the duality



732

transformations and rewrite the action in terms of ny —np,
massless and ny, massive vector multiplets. Finally, in the
appendix we present the supersymmetry transformations
of the chiral spinor multiplet and give a modification of
these transformations that preserves the WZ gauge. This
allows us to discuss the order parameters for supersymme-
try breaking.

2 Spinor superfields coupled to vector
and chiral multiplets

In N =1 supersymmetry an antisymmetric tensor B,,,
is part of a chiral spinor superfield @, while its three-
form field strength H,,,, resides in a linear multiplet L.
In this section, we consider a set of ny linear multiplets
L' and the corresponding ny, chiral spinor multiplets @,
I=1,...,ny. Wereview some of their properties and con-
struct a gauge invariant action.

The linear multiplet is a real superfield, defined by the
constraint [22]
D*Lf =0,

DL = (1)

where D, is the superspace covariant derivative.! The

6 expansion of L' reads

_ 1 _
I I I =I m npql
L'=c +077 + 071" + 500™ B H™?

(99)aam ] ——(éé)eom m—f——eeeemcf
(2)

Here C! are real scalars, n’ are Weyl fermions and H, ,I,mp =

8[mBTILp] are the field strengths of the antisymmetric ten-
sors B,

Each antisymmetric tensor B,
spinor superfield &/, defined by [22]

is contained in a chiral

L' =S (D¢ +Da®),  Dybl=0. (3

l\DIr—\

The &! enjoy the 0 expansion

Po = X4

1 1
-0, (55;(01 +iET) + 1(0"7")a

’YBI )

where !, are additional Weyl fermions and E' additional
scalars. Due to its definition (3) the L! are invariant under
the gauge transformations

+00(nk +i0as™Omx™), (4)

Ll 4 %DQDQAI , (5)

1 Throughout the paper we are using the conventions of [32].
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where the A” are real superfields. The expressions D? D, A!
are chiral and we therefore can write?

i_
—-D?D AT
8

_ _%}g _ (53%151 + i(ama”)l (Om AL — 3nflfn)> 0,

- %%ma;"damf[ (6)
We immediately see that the fields x and E! defined in
the f-expansion of the superfield ®! in (4) can be gauged
away by AL and D! using (5). This leaves only the physi-
cal degrees of freedom C!, BI =~ and n' in the component
expansion of @/ . Thus in this WZ gauge we have

7L =0, (5810 + {67 Bh ) 4000 (D)

and the left-over gauge invariance is the standard two-form
gauge invariance
Bl =Bl +o,AL—0,4L, ¢t =t nl—nl.

The superfields ¢, and L’ can be used to construct
a gauge invariant action. The kinetic term is given by

Liin = — / d?0d%0K (L1), (9)

where K (L!) is an arbitrary real function of the L!. In
components, (9) reads

1
Lyin = _ZKIJ ((3mCJ) (omch)

3
+i(n' 0™ O’ + 75" Opn”) + Hm"p’Hén,,>
1 m = n
- gKIJK(T]KU nlemnqu qu)
1 3 I J-K-L
TR A CUR AN (10)
where we abbreviated
_ O"K(C)
Kry..x = 567967, 90K * (11)

In addition to the kinetic term we can add a mass term
for the BI  if we introduce a set of Abelian vector multi-
plets VA, A=1,...,ny. As we will see they can be used
to ensure the gauge invariance (8) and they also provide
the necessary degrees of freedom in order to render the

2 The expansion has the same structure as the field strength
of the vector multiplet that we introduce in (12). To avoid con-
fusion with (12) we have hatted the corresponding component
fields of (6).
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B!, massive. Let us denote the field strengths of the vec-
tor multiplets by W2 = —2D?D, V4, with the component
expansion

WA= _iNA <55DA ;( "G ")QF,;‘TL)@@

+000™, D N9 (12)
Here FA, = 0,,v — 0,v2 are the field strengths of ny
U(1) gauge bosons v;*.3 The linear combination
2im4 &5 — W5 (13)
is gauge invariant under (5), provided we assign the follow-
ing transformation laws to the V4:
VA S VALmiAT,

Wi — W5 — -m3D?DgA” .

(14)

In (13) and (14) we have introduced the constant coup-
ling matrix mf,‘, which we demand to be real. The linear
combination (13) can be used to build (Lorentz and gauge
invariant) mass terms for @é. However, this is not the only
possible gauge invariant term. Permitting the Lagrangian
to be invariant only up to a total derivative we can also add
the term 2 [ d%0eq®T (WA — 1m§@‘]) +h.c., where e4y is
a constant real matrix. Note that in this expression only
the symmetric part of the product ey Im‘j‘ appears. The
gauge invariance of this additional term can most easily be
seen by first rewriting the term as

—2/ d*fe  LTVA - ( /d Oearmy®'®7 1. c>
(15)
where we used d20 = —1D?, (3) and the definition of W.

Using (5) and (14) we perform the gauge transformations
n (15). For the first term we obtain

b / d*0(—2e4; LIVA) = / d*0e rmFLIAT  (16)
as 6 L1 = 0. Transformation of the second term reads
5 / d%0(—iearm$9'®’) +h.c.

—i/ dQHeA[m‘j‘ <i¢1D2DAJ> +h.c.
. / d*0eaym (&' (DAY + B (D A”))
= 2/ d406A1m§AJLI+total derivative, (17)

where (3) and the chirality of @ have been used. In (17)
again only the symmetric part of e A1m§ enters, while
the variation in (16) contains also the antisymmetric part.

3 wiis invariant under the standard U(1) gauge invariance
VAL VAL AL Z‘A, where the X4 are chiral superfields.
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Therefore, gauge invariance of (15) requires one to im-
i A _ A4

pose the condition earm; = eaym7.* Thus the most gen-

eral gauge invariant action of ny, massive spinor multiplets

coupled to ny vector multiplets is given by

= %/ A%0(fap (2imPd’ — W) (2imF 7 — WP)

+2e4; D" (WA —im4®7)) +hec. (18)
The matrix fap is the gauge coupling function of the
vector multiplets, which can depend holomorphically on
additional chiral multiplets, which we denote by N?,i=
1,...,nc.5 The Lagrangian (18) is our first result, which
coincides with the Lagrangian of [10,11] in the limit of
one linear multiplet, and which was also given previously
in [12].
In components the Lagrangian (18) reads
klmn FAFB

1 . 1
Loy = —7 Re fapFEA FBmn 5 Im fABs

1 5
— 1—66’“’"% arBL (Fa, +Fa) + 5 Re fapDADE

1
— 5(6A1+2ImfABm?)C’IDA

— —Re fapmimBctc! — fABAAamamxB
; (iear +2fapmP)n’ A4
— = (—iear+2fapm?)n' M

— ——=0ifap(m{CT —iD*)X'\P

- ﬁ&ifAB (mict+ iDA)XZS\B

1
2V2
1
2V2
- lFJ@"JFABS\’LXS\B + %XixlaialfAB/\A/\B
; XX 0:0;fap XA

where we defined

OifapFa, X o™ \P

&if_AB mn)\B _FiaifAB)\A)\B

l
mnX g

F’nffn = FA —m7 BI
and used as the component expansion of N*
N = A" +V20x" +00F"
faB(N) = fap(A)+V20x'0; fap(A)
, 1. .
+ 66 (FlaifAB(A) — §X1X78i(r9ijB(A)> .
(21)

4 We thank U. Theis for discussions on this point.

5 Of course, we also need to add kinetic terms for the N?, but
since they play no role here we omit them in the following.
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(We abbreviate 9; = 557 AZ .) The auxiliary fields D“ may be
eliminated by their equations of motion

1
DA = 5(Re f)~AB ((eBI +2Im fgem§)C!

- (0:fBex'AC — &ch)ZiS\C)> . (22)

V2

Inserting (22) into (19) we obtain

1 4 s 1
Lm==7Re fapFA FBmn g m fapedmmEARB

1 §
— Ee“m"eAIB,ﬁl (B, +Fh) -V

1
5 (iear +2fapmP)n’ A%

1

—5(—16A1+2fABm1) I)\A——fAB)\A FopNB
1z Sa-k B I.k\B

— = A Ok A ——8 m7C x" A
2fAB " Ok 2\/§ka31 X
1 _ - _

— ﬁa]’cfABm?CI)_(k)\B
i

+——(Re f)~ 148
5®e)

% (O1facx' A = Orfacx' A
i —1AB

+ 5 (Re ) 7

X Orfec (O1facX' A% — OfacX' A
i —1AB

+igReN) _

X 31;fBC(3[fAG>Zl>\G — O facx'A\9) XA

)(eBI +2 Imecm?)CI

G)Xk)\c

a k mn/\B
2\/— kfasF X o
- T - 1
— L i FABFA KRB — 1Pty fapaAnE
2\/5 kaB mnX O 4 kaB
1 -7z, - <4< 1
~1 kop fapA\AAE 4 ngXlakalfAB)\A)\B
1+ - o
+ g)?kf( OrOrfap N (23)

where the scalar potential is given by

V= é ((Re f)~147

x (ear+2Im facm§) (eps+2Im fppm?)
+4Re fapmim?b) cic’. (24)
In order to make the contribution from the D-terms mani-
fest we can alternatively write the potential as

1
V=3 Re fapDADE +5 ! Re fapmimBcic’  (25)
for DA = 1(Re f)~'4B(eps +2Im fpem§)C!. We see

that there is a contribution to the mass terms for the

scalars C7 that does not arise from eliminating an auxiliary
field.
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For generic charges egs,m% (i.e. these are non-zero)
the minimum of V is at C! = 0. This follows from the fact
that Re fap is the gauge kinetic function and therefore is
positive definite. As a consequence, both terms in (24) are
manifestly positive.

To close our discussion of the Lagrangian (18) let us ex-
plicitly display the mass terms for the B/ . Using (20) we
can write

1
Lyt =—7(M*), BBy,

1 mn
+ ;) (M%)ngl Ble{qu )
(M?)r; =Re fapmim?%,
1
(M%)U:ImfABm‘;‘mﬁ—i—ieAIm?. (26)

As we see the action contains an ordinary mass term M?2 as
well as a topological mass term M2. For m# = 0 both mass
terms vanish, and a massless antisymmetric tensor with

a Green—Schwarz coupling of the form e 4 Iem”qu;énBI{q i
left.

3 Dual formulation

So far we have discussed the possible couplings of a set of
spinor superfields to Abelian vector and chiral multiplets.
In components this led to massive antisymmetric tensors
possibly with additional Green—Schwarz couplings. It is
well known that theories with antisymmetric tensors have
an equivalent dual formulation: a massive antisymmetric
tensor is dual to a massive vector, while a massless anti-
symmetric tensor is dual to a scalar. The purpose of this
section is to derive the dual of the theories discussed in
the previous section. More specifically, we perform a dual-
ity transformation in superfields and then expand the dual
action in components. As a warm-up we first consider the
massless case with non-trivial Green—Schwarz couplings
(m# =0, ear, #0) and then turn to the general case, in
which also m4 # 0.

3.1 Massless tensors with Green—Schwarz couplings

For m#' = 0 the action given by (18) and (9) can be rewrit-
ten as

L=— / d*0(K (L") +earL'V*)

+ i (/ A*0fapWAWE + h.c.) : (27)

where we partially integrated using the definition of WA,
(3) and d%0 = —1D?. We see that the entire action is ex-
pressed in terms of linear multiplets only, and no mass
term for the antisymmetric tensors is present. The La-

grangian (27) can be derived from the following first-order
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Lagrangian:

Leirst = — / d*0(K (V) +earVIVA+ VO (S +57))

1

+7 (/ A*0fapWAWE + h.c.) : (28)

where the V97 denote n, real vector (but not linear) super-

fields, and St are ny, chiral superfields. Eliminating the Sy
by their equations of motion, we find

DV =p*V% =0, (29)
where we used that a chiral S7 can always be written in
terms of an unconstrained superfield X; via S; = D?X;.
From (29) we learn that V%! is constrained to be a linear
superfield and thus can be identified as

Vol =1, (30)

Inserted back into (28) using [ d*0L!(S;+ Sr) =0, we fi-
nally arrive at (27).

If we eliminate the V%! instead we obtain the dual the-
ory in terms of the chiral multiplets S;. The equation of
motion for V! reads

3V0KK(VOI)—|—6AKVA—|—SK—|—S'K:O. (31)

With the help of (31) we can express V%K as a function of
eax VA + Sk + Sk and possibly of the other VO, T 4 K.
Let us denote this function by h¥, i.e.

VO = hE (VY epx VA + Sk + Sk) - (32)

The precise relation will of course depend on the particular
form of K (V°). We may now rewrite K in terms of h¥ and
replace it by its Legendre transform K,

—K(eAIVA—f—S]—f—S'[) =K(h')+ (eAIVA+SI+gI)hI»
(33)

which, due to (31), is a function of esx VA + Sk + Sk. In-
serted into (28) we finally arrive at

Lz/d49K(GA1VA+SI+S’1)
+i</d20fABWAWB+h.C.>.

L is the dual Lagrangian of (27), which is expressed in
terms of ny vector multiplets V4 and ny, chiral multiplets
Sr.

In the original formulation given in (27), the gauge in-
variance of the vector multiplets

(34)

VASVALZALEA DXt =0 (35)
is manifest, since the entire action is expressed in terms of
the gauge invariant field strength 4. In the dual formu-
lation (35) has to be accompanied by a shift of the chiral

multiplets,

S]%S[—GA[EA. (36)
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We see that the S; play the role of Goldstone supermul-
tiplets, which are necessary in order to maintain the U(1)
gauge invariance. Thus the first term in (34) corresponds to
a mass term for the vector fields, while the second term is
the standard kinetic term. In order to see this more explic-
itly let us expand the Lagrangian (34) in components. We
take V4 in a Wess—Zumino gauge and expand accordingly

_ __ — 1
VA = —00™0v +100004 — 10602 + 5aeenevDA :

S = %E, /200 + 00 F; . (37)
Inserted into (34), we arrive at
L= —% Re fapFA™FE 4 é Im fape™™" F F2
+ % Re fapD*D"
L (FanM o™, AP — Fapda o™ A)
+ %@JIABDAXU\B - ;W&JIABDA)ZES\B
- %ai FapFA xio™m\E - %a; FapFA Ka™m 3B

1, 1ir s as
= F 0 apX AT — ZF'0; fapXN"

+ %x"xj 0:0; fapA* NP + é XX 0:05 fap A N"
+ %KIeAIDA + EKIJKL'QZJIde_JK@L

+ KU{ - i@m(Re E)0m(Re Ey)

—~ %(8m(1m Er) +earv*™) (0™ (Im Ej) + ep05™)
+ \%em (vsA? —dsA%)

- % (%50 Omtor + 015" Omir) + FIFJ}

1. _
+ EK[JK{ —1/)10’m1/)J(€AK’UAm+(9m(ImEK))

— (Y19.0)Fx — (¥197) Fx } 5 (38)
where we abbreviate K; = ORe EIf( . As promised, we see
that the real scalars (Im Ex ) play the role of ny, Goldstone
bosons, which render the linear combinations e 4 KvA™ of
the nz, vector fields vA™ massive.

Eliminating the auxiliary fields F; and D4 by their
equations of motion, we arrive at the following bosonic
action:

1 1
Ly =—7Re fapFA™FB + —Tm fape™P"FA FB

] mn® pr
1.

— ZKU(am(Re E)om(ReEy) +6A16BJU7élUBm)

-V, (39)

where we have chosen the unitary gauge and absorbed
Im Ef into a redefinition of v/:. The scalar potential is of



736

the standard N = 1 form and is given by

1 1 NS
V= 5 Re fABDADB = g(Re f)ilCDecjeD‘]KIK‘].

(40)

This potential agrees with the one given in (25) for
mit = 0 if one also identifies K7 = —C”. For this substitu-
tion also the kinetic terms of the scalars C1 and (Re E;)
agree. Indeed starting from —1K;;(9,C7)(0™CT)
and wusing the above identification, we arrive at
—if(u((?m Re E7)(0m Re Ey), taking into account that
due to (33) we have Ore . K = — 0.

3.2 Massive antisymmetric tensors

Let us now turn on the couplings mf‘ and repeat the an-
alysis of the previous section. In this case we start from the
first-order Lagrangian

Leirst = / d49{ e

where L,, is given in (18). K is a real function of the vec-
tor multiplets V!, which will turn out to be the Legendre
transform of K.

Let us first show that from (41) one can derive the La-
grangian for ny massive linear multiplets as given by the
sum of (18) and (9). To do so, we vary (41) with respect to
V7 and obtain

V(D@L + Dq @f“)} + Lo,
(41)

O, K(V!) = - (D@L + Ds®’%) =L7.  (42)

DN =

For appropriatej% , (42) may be solved giving V7 as a func-
tion of L7 and V', I # J. We shall denote this function by
hE = nE (LK, VI) VK. As in the massless case we can
express K in terms of the h€. Together with (42), this leads
us from (41) to
L= / d4O{K (%) —n'L} + L, (43)
Due to (42) the expression —K (L) := K(h!) —h’ L” is the
Legendre transform of K (h!) with respect to all !, i.e., it
is a function only of the L!. Substituting K (L') into (43)
we have arrived at the Lagrangian for n; massive linear
multiplets as stated above.
Alternatively, we can eliminate the . multiplets, and

this yields the desired dual action. To do so, let us first
rewrite (41) as

‘Cﬁrst:/d49k(‘7[)+i/dzefABWAWB—f—h.C.
1—, 1
+/d29{¢>1<§WI+§eAIW —ifapm?t WA>

— 2,0 e’ } +he., (44)
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where W7 = —%DQD‘?J is the field strength of ‘N/‘], and we
have performed a partial integration. We also introduced
the mass matrix

:uIJ (M2)1J+1(MT)IJ7 (45)

with M? and M2 being defined in (26). The equation of
motion for @, can be obtained from (44) by using again
&, = D?*X,,. Demanding p?; to be invertible we arrive at

1 1 .
@i:i(lﬂ)lK( WK—|—2€AKW lfABmEW(f> .
(46)

Inserting this back into (41), we obtain

L= /d40K (Vi + /d 0f izsWAWE +he., (47)

%WI, W4). So the

,np,np+1,...
(ny +np)-dimensional
is given by

P <fu le)
A\ fas fag)

_ 1 .
1)1k ( —5eAK Tt lfAszlg> )

where we have introduced W4 := (—
index A takes values A= (I, A) = (1,...

ny ). Furthermore, the (ny +nr) x
gauge coupling matrix f ;

(48)

where

igs  fra=

fro= (12

X - 1 .
fap = fap+ (W) <— JeAr + 1fADm?>

1 .
X (- §CBJ+1fBCm§) . (49)

The term K (V7) in the Lagrangian (47) contains mass
terms for ny, vector multiplets. Thus the Lagrangian (47)
appears to depend on ny massless and ny massive vec-
tor multiplets. However, ny, of the original ny vector fields
are now unphysical. This can be seen from the fact that
the gauge coupling matrix Re f ;5 has ny zero eigenval-
ues, while Im f ~» has ny, constant eigenvalues. Or, in other
Words ny, of the vector fields only have a topological coup-
ling but no kinetic term. Indeed, using (26) and (45) it is
easy to verify that

i
—ZE€AK . (50)

fipm% =i0rx, fapm¥ = 5
This shows that the ny, vectors (0, ..
tors of Re f ip With eigenvalue zero.
In order to display the physical components of V we de-
compose it into a vector multiplet V%7 in the WZ gauge and

the real part of a chiral superfield S’

.,0,mE) are eigenvec-

vi=vo gl s, (51)

anL+
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The component form of (47) can then be obtained by in-
serting the Wess—Zumino gauge (37) for V%!, while for the
chiral multiplets ST we use
1 i _
St =S Ar+V200; + %eameamAI L 00F;

i

=1 - 1
\/5098m1/)10m9+ ZOGOGD §AI . (52)
Inserting this into (47), we arrive at
1 ; i s 1 ; i D
L=—7RefipF " Fr + g Im fage™ ™ FLFR,
1 - i~p . 1~ 1.
4 5 Re fABDADB + §KIDOI _ ZKIJ'UOImUEnJ

— EKU@’”(Re A[)am(Re AJ) — KIJFIFJ
i

2

+ %KU{i\@(K/&I}\OI — A7)

— (g0 Omthr + 115" Omthr) }

+ %KIJK{ — 10" ot — (rps)Fx — ($rbs) Fic }

1. o
+ ZKIJKL¢I¢J¢K¢L+.-. ,

( AAB)\AJkakS\B + }ABXA(?’“&CAB)

(53)

where K| = Oge 4 If( was used, and terms proportional to
0; f 4 5 have been neglected.

The next step is to eliminate the auxiliary fields from
the Lagrangian. The equations of motion for F; can be de-
termined in a straightforward manner to be

1o .-
Fr= §KU;1KLJK¢J¢K. (54)
For DA, however, the situation is more difficult, since some
of the vector multiplets are unphysical. In order to remove
the unphysical degrees of freedom we fix the gauge invari-

ance of (46).
To this aim let us rewrite (46) in the following way:

1 1~ 1
@é = _iRIK{ — §WK — <§€AK—|—ImfABmI€>WA
+ Ry Iy Re fABm?WA}

i 1~ 1
+ %IIK { §WK + (§6AK +Im fABm[%) w4
—~ I RrsRe fABm{?WA} , (55)

where we divided the coupling matrices of (46) into their
real and imaginary parts, and we abbreviated

Rrx = [Re((1®) D1k

and

Irge = [Im((?) )ik -
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Going to the WZ gauge (7) for &/, we see that the 6-
component of the imaginary part of the right hand side
of (55) has to vanish. This implies

D! = —(eak +2Im fapm¥)D*

+2Ig Ry Re fapmBDA ..., (57)

where we have omitted the fermionic terms. We can now
use the constraint (57) to eliminate the D°X from the La-

grangian. Let us concentrate on the bosonic terms, which
we read off from (53) to be

1 a5 1.
V=-5Re fipDAD" — inDOI. (58)

Inserting (49) and (57) and using DA = (—1D°% D4, we

obtain the following equation of motion for D4:

{RijI; 4 I;xRxRnsRe fac Re fepmfmy
+ RrsRe facRe fBDm?m? +Re fap }DB

N 1
= _KK{ - (§€AK +ImfAcmf()

+ It Ry Re facm§ } . (59)

The inverse of the matrix multiplying D is found to be
(Re f) "4 — Rpymimy; (60)
which implies

S 1
DF = Kk (Re f)~ 154 <§eAK +1Im fACm%> . (61)

Inserting (54) and (61) back into (53), we arrive at

1 P i - 1 . -

L= -3 Re f 5 F*™FE + 5 Im f ;5" FG FE
1. 1.

— ZK[L]’IJOIm’U?nJ — ZK}J({)m(Re A])am(Re AJ)

— %(fAB)\AUkak/_\B + }AAB/_\Aﬁkak}\B)

+ S R1{IVEp - §,A%)

—i(¢ g0 Omibr + 116" Omthr) }
1

- if(IJKMUmﬂ;JU?nK

1, . L o
+1 (Kroxr — KromKysKxrs) bk

V.., (62)

where the scalar potential is given by

1
V= g{(eAI+2ImfAchC)
X RefflAB(eBJ—I—ZImeDm?)

+4Re fABm?mﬁ}IA(IIA(J . (63)
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This potential indeed coincides with (25) for C* = K. For
this identification also the kinetic terms agree, which sim-
ply expresses the fact that K and K are related by a Leg-
endre transformation. Thus (62) is the desired dual action
of (23).

4 Conclusion

Let us summarize our results. We proposed an N =1 su-
perfield action for ny, chiral spinor superfields coupled to
ny vector and ne chiral multiplets. The component form
of this action was given and shown to contain gauge invari-
ant mass terms for ny, antisymmetric tensors. In addition,
the action also features Green—Schwarz couplings to the ny
vector fields. Supersymmetry gives a mass to the super-
symmetric partners C of the antisymmetric tensors with
the peculiarity that these mass terms do not arise from
eliminating an auxiliary field. Indeed, the supersymme-
try transformation laws show that any Lorentz invariant
ground state of the spinor superfield preserves supersym-
metry. Instead the supersymmetry transformations of the
vector multiplets are modified, and a vacuum expectation
value of the scalars C! can break supersymmetry by gener-
ating a non-vanishing gaugino transformation.

We also constructed the dual action in terms of ny, mas-
sive and ny —ny massless vector multiplets by explicitly
performing the duality transformations in superspace. We
gave the component form of the dual action and showed
that the scalar potentials in both formulations coincide.

For one chiral spinor superfield, the action agrees with
the action given in [10, 11], which also appeared in Kaluza—
Klein reduction of type IIB string theory compactified on
Calabi—Yau orientifolds [16].
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Appendix: Modified SUSY transformations
of the chiral spinor superfield

In this appendix we derive the supersymmetry transform-
ation laws of a chiral spinor superfield in the WZ gauge.
The main motivation for this exercise is to identify the
order parameters for spontaneous supersymmetry break-
ing. For simplicity, we perform this analysis for a single &,,.

The general supersymmetry transformation of @, reads

Do — By =P+ 0cPo = P + (£Q +EQ) D, (A.1)
where @ and @ are the supersymmetry generators. In
terms of the component expansion (4), we have

1 1
Sexo =~ (30LCHE) + 1001 B ).
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56C = E%1a+ EaT]”
0¢ B = —i&%nq +i&aT"
+2 (fﬁoglaamid - Ed5mdﬁamXﬂ) y
3B = 20 (™) + 27 (047
+ Qi(fﬁag‘d(?")zd - g%gdamxd)
+2i(€a5™? 3"x,@ —£ad" 0™ x3)
0eNa = 1oaa§a5k0

’Cmn’“amg OBy . (A2)

In the WZ gauge we choose x, =0 and E =0, and thus
(A.2) becomes

1 1
5£,WZXa = _g'y (55204' Z(Jm

e wzC = En+&7,
o, wz Bl = —i&n+i&7,
de, wzB™" = 200" + Qﬁﬁmnﬁ ;

8¢ Wzl = i(07€)00,C — kmm(a@ Ok Bomn -
(A.3)

a")zan) ,

We see that x, and E do not transform to zero, and, there-
fore, one needs a compensating gauge transformation to
stay in the WZ gauge. These are given in (5) and (6), and
so we are led to choose

Azz—sy( 50+ 2oz "Wan),

= ién—ién. (A4)
This ensures (d¢ wz + 0gauge)X = 0 = (d¢, wz + dgauge) E and
modifies the transformations of the physical fields accord-
ing to

(0, Wz + Ogange)C = En+£77, )
(0e,wz + Ogauge) B™" = 2na™"§ + 266"
+amAen _anAem,
(0¢,wz + Ogange) o = 1(0%E) 0Ok C

L (0,6) 0

(A.5)

We see that in a Lorentz invariant ground state super-
symmetry cannot be broken by any of these transform-
ations. However, in a WZ gauge the transformation laws
of the charged multiplets also change. For the case at
hand these are the transformations of the vector multiplet,
which without couplings to a spinor superfield read

8¢ Frnn =1[(£0™OmA+£8" 0 A) — (§0™ O A+ £ 00N |,
deAa =10 D+ (0""E) 0 Frmn »
5eD = E6™ O A — £ O\ . (A.6)

Gauge invariance of the couplings to the spinor super-
field forces the gauge fields to transform according to (14).
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Thus, with the special choice (A.4) we obtain for the com-
bined supersymmetry and gauge transformations

1
(06 + gange) Ao = —m& (32C + §(Um5n)g¢Bm")
+ia D+ (0™"E) 0 Fmn
(8¢ + Ogauge) D = m(ién — i€R) + €6 O\ — £ O

(8¢ + Ogauge) Frn = 1[ (€0 OmA + €50 \)

— (gamanﬂ+é&manA)] +mkFE;,, .
(A.7)

As one can see supersymmetry can be broken in (A.7) if
either C or D acquire a vacuum expectation value that is
different from zero.
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